Développements, factorisations

A savoir:

Développer : transformer un produit en une somme.

Factoriser: transformer une somme (ou une différence) en un produit.

Formules à utiliser :

- pour un développement simple :

- pour un développement double :

$$(a + b)(c + d) = ac + ad + bc + bd$$

Pour factoriser une expression, il faut rechercher le facteur commun.

k est le facteur commun

Attention! Ce facteur peut être un nombre (ex : 7) mais aussi une expression (ex : (3x+9)), et ce facteur peut être « caché ».

<u>Remarque</u>: pour développer et factoriser, on peut également se servir des identités remarquables (voir fiche suivante).

A savoir faire:

Développement simple :

$$A = 6(x - 4)$$

 $A = 6x - 24$

Développement double :

B =
$$(x + 2)(x - 3)$$

B = $x^2 - 3x + 2x - 6$
B = $x^2 - x - 6$ (on a **réduit**)

Factorisations A = 28 - 7x. Le facteur 7 est caché.

$$A = 7 \times 4 - 7x$$

$$A = 7 (4 - x)$$

$$C = (x + 1)(x + 2) - 5(x + 2)$$

$$C = (x + 2)[(x + 1) - 5]$$

$$C = (x + 2)(x + 1 - 5)$$

$$C = (x + 2)(x - 4)$$

$$B = (2x + 1)^{2} + (2x + 1)(x + 3)$$

$$B = (2x + 1)[(2x + 1) + (x + 3)]$$

$$B = (2x + 1)(2x + 1 + x + 3)$$

$$B = (2x + 1)(3x + 4)$$

Pour s'entraîner :

Développer et réduire A =
$$4(x-7)$$
 B = $(x-8)(x+7)$ C = $3x(x+1)-5(2x-3)$
D = $(x+2)(x-3)-4x(x+5)$

Factoriser E =
$$4x^2 - 6x$$
 F = $3(y - 8) + (y - 8)(7 + x)$
G= $(x - 1)(x + 3) - (x - 1)(2x + 5)$